absorption in the 5.0-6.0- μ region. All attempts at crystallization from a variety of solvents resulted in decomposition with the appearance of a band at 5.95 μ . Analysis of the material directly from the reaction mixture after drying at 55° for 48 hr. *in vacuo* gave the following result.

Anal. Calcd. for $C_{19}H_{14}N_4O_5$: C, 57.9; H, 3.56. Found: C, 57.9; H, 3.50.

This material could be converted to IVd by heating with aqueous bicarbonate for an additional 120 hr.

Reaction of 1-Benzoyl-2-phenylpyrazolo[1,2-a]pyrazole with Hydrochloric Acid. Two hundred milligrams of IVa was treated with 6 ml. of concentrated hydrochloric acid. The resulting solution was heated under reflux for 10 hr. during which time 0.039 g. of benzoic acid (identified by infrared and melting point) sublimed into the condenser. On cooling the solution, an additional 0.012 g. of benzoic acid (61% over-all) was obtained. The filtrate was evaporated *in vacuo* to yield 0.241 g. of a brown hygroscopic solid. This was treated with picric acid to give what appeared to be the *hydropicrate* of 2-phenylpyrazolo[1,2-*a*]pyrazole, yield 0.230 g. (82%), as a yellow solid, m.p. 174–178°. This material was unstable in solution and was analyzed directly.

Anal. Calcd. for $C_{18}H_{13}N_5O_7$; C, 52.55; H, 3.19; N, 17.02. Found: C, 52.54; H, 3.19; N, 16.80.

Acknowledgment. Acknowledgment is made to the National Science Foundation and to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

The Reaction of Aliphatic Diamines with Phenyl Acetate

Thomas C. Bruice¹ and Roland G. Willis²

Contribution From the Department of Chemistry, Cornell University, Ithaca, New York. Received July 27, 1964

d*t*

The reactions of the aliphatic primary amines n-propylamine and n-butylamine, the diamines $NH_2(CH_2)_n NH_2$, and their conjugate acids $NH_2(CH_2)_nNH_3^+$ (where n =2-6), with phenyl acetate are kinetically first order in amine and first order in ester. The lack of detectable termolecular terms provides evidence that intermolecular general base and general acid catalysis is not significant in the aminolysis of phenyl acetate by alkyl amines. The positive deviations of the log k, values for the diamines from a Brønsted plot for the reaction of simple amines with phenyl acetate suggest that some contribution from intramolecular general base and general acid catalysis might occur or alternatively that the diamines form a separate Brønsted series. The reactions of 2-dimethylaminoethylhydrazine and 3-dimethylaminopropylhydrazine with phenyl acetate were also found to be first order in nucleophile and first order in ester. This result is in marked contrast to the importance of general base and/or general acid assistance in the reaction of hydrazine and N-methylhydrazine with phenyl acetate. The rate constants for the reaction of dimethylaminoalkylhydrazines with phenyl acetate are about 10³ greater than predicted from a Brønsted plot and the dependence of the rate constants on the mole fraction of the dimethylamino group in the free-base form suggests a very significant intramolecular general base catalysis.

Previous reports of investigations of the aminolysis, ammonolysis, hydrazinolysis, etc., of phenyl acetate (PA) have shown these reactions to be subject to general base and general acid catalysis. Bruice and Mayahi³ found the ammonolysis of PA to follow the rate expression (30°, H₂O, $\mu = 1.0 M$)

$$\frac{+\mathrm{d}(\mathbf{P})}{\mathrm{d}t} = [0.245(\mathrm{NH}_3) + 0.722(\mathrm{NH}_3)^2](\mathrm{PA}) = [k_{\mathrm{n}}(\mathrm{NH}_3) + k_{\mathrm{gb}}(\mathrm{NH}_3)^2](\mathrm{PA}) \quad (1)$$

where k_n and k_{gb} represent rate constants for secondorder nucleophilic attack of ammonia and third-order general base assisted nucleophilic attack of ammonia, respectively. Jencks and Carriuolo^{4a} reported the following rate laws for the aminolysis of PA by several simple aliphatic amines (25°, H₂O, $\mu = 1.0 M$).^{4b}

$$\frac{+d(P)}{dt} = [4.5(n-BuNH_2) + 5.0(n-BuNH_2)^2 + 1900(OH^-)(n-BuNH_2)](PA) \quad (2)$$
$$\frac{+d(P)}{dt} = [4.5(Me_2NH) + 14.0(Me_2NH)^2 + 14.0(Me_2N$$

$$2430(OH^{-})(Me_2NH)](PA)$$
 (3)

In addition it was found by Jencks and Carriuolo^{4a} that the hydroxylaminolysis of PA exhibited general acid as well as general base catalysis, *viz*.

$$\frac{-d(PA)}{dt} = [0.70(NH_2OH) + 6.0(NH_2OH)^2 + 1.7(NH_2OH)(NH_3^+OH)](PA) = [k_n(NH_2OH) + k_{gb}(NH_2OH)^2 + k_{ga}(NH_2OH)(NH_3^+OH)](PA)$$
(4)

where $k_{\rm ga}$ is the rate constant for the termolecular

⁽¹⁾ Department of Biological Sciences, University of California at Santa Barbara, Santa Barbara, Calif.

⁽²⁾ Postdoctoral Fellow of the Department of Chemistry, Cornell University.

⁽³⁾ T. C. Bruice and M. F. Mayahi, J. Am. Chem. Soc., 82, 3067 (1960).

^{(4) (}a) W. P. Jencks and J. Carriuolo, *ibid.*, 82, 675 (1960). (b) We were unable to detect a k_{gb} term for either *n*-butyl- or *n*-propylamine reacting with PA (see Results).

general acid assisted nucleophilic attack of hydroxylamine on the ester bond. Similarly Bruice and Benkovic⁵ have found the hydrazinolysis of PA to be subject to both general acid and general base catalysis (18°, H₂O, $\mu = 1.0$ M). Support for the supposition that the termolecular terms do represent general base

$$\frac{-\mathrm{d}(\mathrm{PA})}{\mathrm{d}t} = [0.245(\mathrm{H}_2\mathrm{NNH}_2) + 10.75(\mathrm{H}_2\mathrm{NNH}_2)^2 + 2.62(\mathrm{H}_2\mathrm{NNH}_2)(\mathrm{H}_2\mathrm{NNH}_3^+)](\mathrm{PA}) \quad (5)$$

and general acid catalyzed reactions stems from: (1) the deuterium solvent kinetic isotope effects associated with these terms; (b) the fact that product analysis, when carried out, has shown the ester to have undergone an aminolysis type reaction; (c) the catalyst species may be replaced by other general acid and general base pairs⁶; and (d) the efficiency of catalysis follows the expectation of the Brønsted relationship.⁷

The efficiency of general catalytic processes are of great interest because of their most probable involvement in enzymic ester hydrolysis.⁸⁻¹⁰ One of the tenets of most active-site hypotheses is that the bringing together of the ester with the catalytic and nucleophilic groups at the active site is responsible for much of the efficiency of enzyme catalysis. Numerous model enzyme experiments have tended to uphold this hypothesis. Bruice and Benkovic, 11 in comparing the rate constants for the reaction of trimethylamine with substituted phenyl acetates to the rate constants for the intramolecular attack of the dimethylamino group on the phenyl ester bonds of γ -(N,N-dimethylamino)butyrates and δ -(N,N-dimethylamino)valerates, found the rate enhancement on going from bimolecular to intramolecular processes to be between 1 and 5×10^3 . This increase in rate was furthermore associated only with the ΔS^* term (ΔH^* and ρ were the same for both intramolecular and bimolecular reactions indicating no change in mechanisms). The cost in negative free energy of activation on bringing the amine and substrate together to form the transition state would then appear to be about 4-5 kcal. mole⁻¹ (at 25°). An additional expenditure of 4-5 kcal. mole⁻¹ in negative free energy should then occur on bringing the catalytic species into the transition state in the termolecular general base and general acid catalyzed reactions. This has been shown to be the case⁵ in the hydrazinolysis of phenyl acetates. The ability of the very improbable termolecular processes to occur is of course related to the fact that, due to their catalytic nature, the potential energy barrier is lowered and the resultant compensatory changes in ΔH^* and $T\Delta S^*$ tend to make the values of ΔF^* for k_n , k_{gb} , and k_{ga} comparable (eq. 1 to 5).⁵

As shown, we can greatly increase the numerical value of the rate constant by conversion of a bimolecular nucleophilic displacement into an intramolecular reaction. One would anticipate, a priori, that a similar

contrivance might be employed to increase the numerical value of the rate constant by converting a termolecular general acid and/or general base catalyzed nucleophilic displacement reaction into a lower order process. The present study was designed to ascertain what type of rate enhancements, if any, are obtained when the nucleophilic amine and the general acid and general base catalytic species, respectively, are contained within a single molecule. On the basis of the report by Jencks and Carrioulo^{4a} that the rate constants k_n and k_{gb} are comparable for the reaction of aliphatic amines such as n-butylamine, with PA we have examined the kinetics of reaction of a series of diamines with PA. Also, on the basis of the similar finding by Bruice and Benkovic⁵ for the hydrazinolysis of PA we have examined the kinetics of reaction of 2-dimethylaminoethyl- and 3-dimethylaminopropylhydrazine with PA. In the diamines it was anticipated that the second amino group, either free or as its conjugate acid, would behave as an intramolecular general base or general acid species, respectively. In the N,N-dimethylaminoalkylhydrazines it was hoped that the dimethylamino group would act as a general base catalyst in assisting the nucleophilic attack of the hydrazine group on the ester bond.

Experimental

Materials. The α, ω -diaminoalkanes were obtained from the Aldrich Chemical Co., Inc.; n-propylamine, n-butylamine, and N-methylhydrazine were Eastman White Label. The amines were converted to their hydrochlorides and recrystallized several times from aqueous ethanol and stored in a vacuum desiccator over P_2O_5 before use.

2-Dimethylaminoethylhydrazine was obtained by the method of Biel, et al., 12 as a colorless oil, b.p. 94-96° at 62.5 mm., n²⁵D 1.4592 (63% yield); lit. 75-79° at 7.3 mm., $n^{25}D$ 1.4541.

Anal. Calcd. for $C_4H_{13}N_3$: C, 46.56; H, 12.70; N, 40.73. Found: C, 46.35; H, 12.72; N, 41.02.

3-Dimethylaminopropylhydrazine was prepared in the same manner and also obtained as a colorless oil, b.p. 112–115° at 64 mm., n^{24,5}D 1.4602 (57% yield).

Anal. Calcd. for $C_5H_{15}N_3$: C, 51.28; H, 12.82; N, 35.89. Found: C, 51.26; H, 13.21; N, 35.54.

The hydrazines were converted to their crystalline dihydrochlorides, recrystallized from ethanol-ether, and stored over P_2O_5 in vacuo before use. In the preparation of the hydrazine hydrochlorides, the ethanol employed was dried over Mg and distilled under N₂. All recrystallizations were carried out under N₂.

 $pK_{a'}$ determinations were performed potentiometrically employing the apparatus previously described by Bruice and Bradbury¹³ using the treatment of data described by Noyes¹⁴ and correcting for hydroxide ion concentration as prescribed by Britton.¹⁵ The apparatus and procedure were first tested by a determination of the thermodynamic pK_a values of 1,3-diaminopropane (found, 8.51 and 10.45; lit.¹⁶ 8.51 and 10.49).

⁽⁵⁾ T. C. Bruice and S. J. Benkovic, J. Am. Chem. Soc., 86, 418 (1964).

⁽⁶⁾ T. C. Bruice and J. J. Bruno, ibid., 83, 1124 (1961).

⁽⁷⁾ L. R. Fedor and T. C. Bruice, ibid., 86, 4117 (1964) (8) T. Spencer and J. M. Sturtevant, ibid., 81, 1874 (1959)

⁽⁹⁾ T. C. Bruice, Proc. Natl. Acad. Sci. U. S., 47, 1924 (1961).

⁽¹⁰⁾ M. L. Bender, Abstracts, 6th International Congress of Bio-chemistry, New York, N. Y., 1964.

⁽¹¹⁾ T. C. Bruice and S. J. Benkovic, J. Am. Chem. Soc., 85, 1 (1963).

⁽¹²⁾ J. H. Biel, W. K. Hoya, and H. A. Leiser, ibid., 81, 2527 (1959). (13) T. C. Bruice and W. C. Bradbury, J. Org. Chem., 28, 3403 (1963).

⁽¹⁴⁾ A. A. Noyes, Z. physik. Chem. (Leipzig), 11, 495 (1893).
(15) H. T. S. Britton, "Hydrogen Ions," Chapman and Hall, London, 1955, p. 219.

The determined values of pK_a' (at about $10^{-3} M$; $\mu = 1.0 M$ with KCl) employed in the kinetic calculations are recorded in Table II.

Kinetics. The kinetic procedure employed has been previously described.⁷ Water used was glass distilled under N_2 and stored under N_2 . In making up solutions, water was added under N_2 pressure. Standard solutions were further saturated with N_2 and then transfered to the spectrophotometric cuvettes. Any air in the cuvettes was displaced with N_2 .

Results

Reactions were carried out at 25° in water at a constant ionic strength of 1.0 *M* (with KCl) under N₂. Constant pH was maintained by employing the amine and its conjugate acid as both reactant and buffer. The concentration of buffer was maintained in great excess over PA so that pseudo-first-order conditions were obtained.

The only simple monoamine investigated in detail was *n*-propylamine. The aminolysis of PA by *n*-propylamine was found to be first order to at least three half-lives. Under the pseudo-first-order conditions employed, the rate expression of eq. 6 was found to pertain so that values of $(k_1 + k_{OH}')$ were determined from the slope of plots of $(k_{obsd} - k_{hyd}')$ vs. *n*-PrNH₂ concentration at constant pH values. Plots of $(k_1 + k_{OH}')$ vs. K_w/a_H then provided k_{OH} as the slope and k_1 as intercept.

$$\frac{-\mathrm{d}(\mathrm{PA})}{\mathrm{d}t} = [k_1(n-\mathrm{PrNH}_2) + k_{\mathrm{OH}}(n-\mathrm{PrNH}_2)(\mathrm{OH}^-) + k_{\mathrm{hvd}}(\mathrm{OH}^-)](\mathrm{PA})$$

At constant pH

$$k_{\rm obsd} = (k_1 + k_{\rm OH}') B_{\rm T} \left[\frac{K_{\rm a}'}{K_{\rm a}' + a_{\rm H}} \right] + k_{\rm hyd}'$$
 (6)

In eq. 6 $B_{\rm T} = [n-{\rm Pr}{\rm NH}_2 + n-{\rm Pr}{\rm NH}_3^+]$, $K_{\rm a}'$ is the acid dissociation constant of $n-{\rm Pr}{\rm NH}_3^+$, and $a_{\rm H}$ is the hydrogen ion activity as determined by the glass electrode. In Figure 1 are plotted the determined pseudo-firstorder rate constants ($k_{\rm obsd}$) vs. $B_{\rm T}$ at constant pH for n-propylamine. Also included in Figure 1 is a similar plot for $n-{\rm Bu}{\rm NH}_2$. The absolute linearity of the plots of Figure 1 substantiates that these aminolysis reactions are not second order in amine. Jencks^{4a} reported the reaction of $n-{\rm Bu}{\rm NH}_2$ with PA to be subject to general base catalysis wherein the value of $k_n \cong k_{\rm ga}$ (eq. 2). By replotting the data provided by Jencks and Carriuolo it can be shown that the curvature in the plots of $k_{\rm obsd}$ vs. $B_{\rm T}$ fall within ca. 5% experimental error in the values of $k_{\rm obsd}$.

Under the pseudo-first-order conditions employed, the reaction of the diamines with PA were found to follow the rate law of eq. 7.

$$\frac{-\mathrm{d}(\mathrm{PA})}{\mathrm{d}t} = [k_1(\mathrm{NH}_2(\mathrm{CH}_2)_n\mathrm{NH}_2) + k_2(\mathrm{NH}_2(\mathrm{CH}_2)_n\mathrm{NH}_3^+) + k_3(\mathrm{OH}^-)(\mathrm{NH}_2(\mathrm{CH}_2)_n\mathrm{NH}_2) + k_{\mathrm{hyd}}(\mathrm{OH}^-)](\mathrm{PA})$$

$$k_{\mathrm{obsd}} = k_1(\mathrm{NH}_2(\mathrm{CH}_2)_n(\mathrm{NH}_2) + k_2(\mathrm{NH}_2(\mathrm{CH}_2)_n(\mathrm{NH}_3^+) + k_3(\mathrm{NH}_2(\mathrm{CH}_2)_n(\mathrm{NH}_3^+))$$

$$k_{3}(OH^{-})(NH_{2}(CH_{2})_{n}(NH_{2}) + (OH^{-})$$
 (7)

(16) C. R. Bertsch, W. C. Fernelius, and B. P. Block, J. Phys. Chem., 62, 444 (1958).

$$\frac{k_{\text{obsd}}}{B_{\text{T}}} = \left[\frac{k_1 K_1 a_{\text{H}} + k_2 K_1 K_2 + k_3 K_1 K_2 K_{\text{w}} a_{\text{H}}^{-1}}{K_1 K_2 + K_1 a_{\text{H}} + a_{\text{H}}^2}\right]$$

where K_1 and K_2 are the first and second acid dissociation constants and B_T was the total concentration of

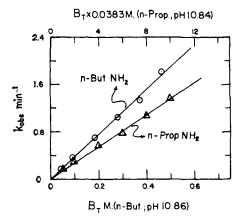


Figure 1. Plots of the pseudo-first-order rate constants for the aminolysis of phenyl acetates by n-butylamine and n-propylamine. The linearity of the plots establishes the reactions to be first order in amine.

amine in all its ionic species. All the diamines gave very good pseudo-first-order kinetics with PA to at least three half-lives. Only in the case of 1,2-diaminoethane and 1,3-diaminopropane were the rate constants for specific base catalysis evaluated. By operating at lower pH values the k_3 term can be made kinetically unimportant so that eq. 7 becomes eq. 8.

$$\frac{k_{\rm obsd}}{B_{\rm T}} \left(K_1 K_2 + K_1 a_{\rm H} + a_{\rm H}^2 \right) = k_1 K_1 a_{\rm H} + k_2 K_1 K_2 \quad (8)$$

Plots of the left-hand side of eq. 8 vs. $a_{\rm H}$ give $k_1 K_1$ as the slope and $k_2 K_1 K_2$ as the intercept $(a_H = 0)$. Knowing all other variables and constants, values of k_3 were obtained from eq. 7 by approximation. In Table I the experimentally determined apparent secondorder rate constants are compared to the calculated constants employing eq. 7 and the determined K_1 , K_2 , k_1 , k_2 , and k_3 constants (these constants are tabulated in Table II). In the case of the remaining diamines of n = 4, 5, and 6 a full analysis was not attempted. The apparent second-order rate consts (k_{obsd}/B_T) could adequately be determined by working at as low pH values as the pK values would allow, effectively eliminating any contribution from specific base aminolysis, and using eq. 8 graphically to find k_1 and k_2 . The values of k_1 and k_2 are included in Table II. The values of K_1 and K_2 employed in the calculation of the rate constants were determined potentiometrically (see Experimental) at $B_{\rm T} = ca. \ 10^{-3} M$. The range of concentrations of $B_{\rm T}$ employed in the kinetic studies included concentrations greater than 10^{-3} M. Since the pH of solutions of diamines changes on dilution (concentration dependence of pK_a') and the effect becomes more pronounced as the amino groups become more separated, the values of k_1 and k_2 for 1,4diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane are probably no better than ± 10 to 15%, though the calculated and found values of Table I are in general closer than this.

Table I. Comparison of Experimental Values of the Apparent Second-Order Rate Constants (k_{obsd}/B_T) with Values Calculated from Equation 7 Employing the Constants Tabulated in Table II

	$-(k_{\rm obsd}/B_{\rm T})$, l. mole ⁻¹ min. ⁻¹		
pH	Found	Calcd.	
	$NH_2(CH_2)_2NH_2$		
7.89	0.020	0.021	
9.33	0.185	0.227	
9.78	0.552	0.513	
10.19	0.913	0.939	
10.52	1.43	1.38	
10.70	1.71	1.68	
10.85	1.98	1.97	
	$NH_2(CH_2)_3NH_2$		
8.17	0.0371	0.0374	
9.29	0.512	0.531	
9.83	2.39	2.44	
10.15	4.88	5.06	
10.20	5.93	5.60	
10.38	8.70	7.58	
10.70	14.9	14.15	
10.73	15.4	14.60	
11.02	22.6	22.6	
11.30	33.5	35.0	
	$NH_2(CH_2)_4NH_2$		
8.76	0.0987	0.0920	
9.02	0.166	0.166	
9.15	0.208	0.225	
10.35	2.88	2.77	
10.57	3.71	3.87	
	$NH_2(CH_2)_5NH_2$		
9.19	0.304	0.304	
9.32	0.412	0.411	
9.45	0.555	0.555	
9.55	0.710	0.701	
	$NH_2(CH_2)_6NH_2$		
9.29	0.333	0.335	
9.47	0.496	0.501	
9.60	0.661	0.667	

second dissociation constant K_2 , via the rate expression

$$\frac{-\mathrm{d}(\mathrm{PA})}{\mathrm{d}t} = \left[\left[\frac{k_1 K_2}{K_2 + a_\mathrm{H}} \right] B_\mathrm{T} + k_{\mathrm{hyd}} (\mathrm{OH}^-) \right] (\mathrm{PA}) \quad (10)$$

The values of k_1 were determined via plots of k_{obsd} $B_{\rm T}$ vs. pH which possessed the requisite sigmoid shape. The instability of hydrazine solutions in the presence of air and base is well known.¹⁷ The aminoalkylhydrazines employed in these studies were found to be very unstable especially at the more alkaline pH values employed and reproducible kinetics could not be obtained without the rigid exclusion of air from the reaction solutions. Excellent first-order kinetics were not obtained with the hydrazines. The reactions proceeded at a greater initial rate, slowing somewhat to proceed with a constant rate. The pseudo-first-order rate constants were calculated from the slopes of log a/(a - x) vs. t plots using the points after the first 25 % reaction. Slightly lower rate constants were obtained if $t_{1/2}$ were taken when $\log a/(a - x) = 0.3$. Plots of k_{obsd} vs. B_T were linear but the second-order rate constants are probably no better than $\pm 20\%$. The determined constants are included in Table II.

Discussion

All the primary amines investigated in this study were found to react with PA via second-order kinetics (eq. 11) where k' represents a pH-sensitive apparent

$$k_{\rm obsd} = k' B_{\rm T} \tag{11}$$

second-order rate constant. Therefore, intermolecular general base and general acid catalysis would appear to

Table II. The Kinetic Expressions and Associated Rate Constants Determined for the Reaction of a Series of Nitrogen Bases with Phenyl Acetate [at 25° in water, ionic strength 1.0 M (with KCl)]

	Base	p <i>K</i>	Reaction kinetics	Rate constants ^a	pH range	No. of pH values at which k_{obsd} detd.	$k_{ m obsd}$	Concn. range of total base (<i>B</i> _T), <i>M</i>
(1)	$(CH_3)_2N(CH_2)_2NHNH_2$	9.23 ^b	$k(\mathbf{B})(\mathbf{E})$	0.885	8.71-10.38	5	23	0.02-0.155
(2)	$(CH_3)_2N(CH_2)_3NHNH_2$ (6.83) ^c	9.83°	$k(\mathbf{B})(\mathbf{E})$	1.33	9.37-10.65	5	22	0.056-0.44
(3)	$NH_2(CH_2)_2NH_3^+$	7.53°	$k(\mathbf{B})(\mathbf{E})$	2.23×10^{-2}	6.98-10.85	7	33	0.0246-0.453
	$NH_2(CH_2)_2NH_2$	10.18 ^c	$k(\mathbf{B})(\mathbf{E})$	1.68				
	$NH_2(CH_2)_2NH_2$	10.18°	$k(\mathbf{B})(\mathbf{OH}^{-})(\mathbf{E})$	1000				
(4)	$NH_{2}(CH_{2})_{3}NH_{3}^{+}$	9.18°	$k(\mathbf{B})(\mathbf{E})$	0.35	8.17-11.26	10	47	0.006-0.485
	$NH_2(CH_2)_3NH_2$	10.62 ^c	$k(\mathbf{B})(\mathbf{E})$	19.9				
	$NH_2(CH_2)_3NH_2$	10.62 ^c	$k(\mathbf{B})(\mathbf{OH}^{-})(\mathbf{E})$	1.13×10^{4}				
(5)	$NH_2(CH_2)_4NH_3^+$	9.94°	$k(\mathbf{B})(\mathbf{E})$	1.4	8.81-9.30	5	17	0.01-0.48
	$NH_2(CH_2)_4NH_2$	10.77°	$k(\mathbf{B})(\mathbf{E})$	9.24				
(6)	$NH_2(CH_2)_5NH_3^+$	10.40°	$k(\mathbf{B})(\mathbf{E})$	4.88	9.17–9.57	4	21	0.05-0.5
	$NH_2(CH_2)_5NH_2$	10.81°	$k(\mathbf{B})(\mathbf{E})$	14.9				
(7)	$NH_2(CH_2)_6 NH_3^+$	10.59°	$k(\mathbf{B})(\mathbf{E})$	6.84	9.32-10.28	3	26	0.05-0.5
	$NH_2(CH_2)_6NH_2$	10.85°	$k(\mathbf{B})(\mathbf{E})$	6.80				
(8)	$CH_3CH_2CH_2NH_2$	10.84 ^b	$k(\mathbf{B})(\mathbf{E})$	4.15	9.84-10.84	5	23	0.05-0.5
	$CH_{3}CH_{2}CH_{2}NH_{2}$	10.84 ^b	<i>k</i> (B)(E)(O H [−])	3.48×10^{3}				

^a In units of min. and M. ^b By half-neutralization. ^c By potentiometric titration (see Experimental).

In the concentration range employed, the reaction of PA with 2-dimethylaminoethylhydrazine and 3-dimethylaminopropylhydrazine was dependent on the

NHNH3 ⁺		$NHNH_2$		$NHNH_2$	
$(CH_2)_n$	$\xrightarrow{K_1}$	$(CH_2)_n$	$\xrightarrow{K_2}$	$(CH_2)_n$	(9)
NHM	fe ₂	NHMe₂		NMe ₂	

be of no significance in the reaction of simple monoand di- primary aliphatic amines with PA.^{4b} The lack of termolecular terms in the reaction of 2-dimethylaminoethylhydrazine and 3-dimethylaminopropylhydrazine with PA is surprising since from the rate expression for the reaction of hydrazine with PA

(17) E. C. Gilbert, J. Am. Chem. Soc., 51, 2744 (1929).

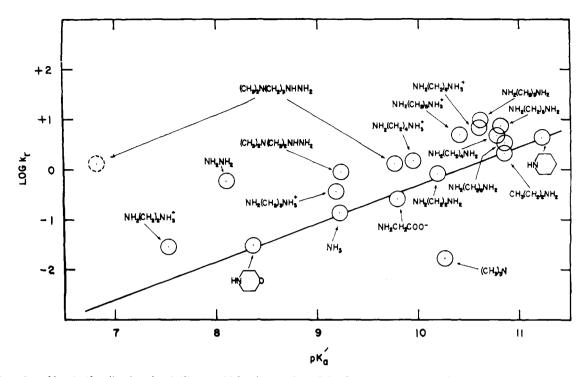
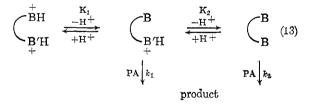
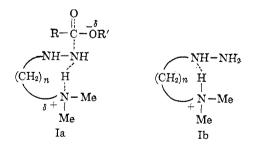



Figure 2. Plot of log k_r (for diamines log $k_r/2$) vs. pK_a' for the reaction of simple primary and secondary amines, α, ω -diaminoalkanes, and α, ω -dimethylaminoalkylhydrazines with phenyl acetate (25°, H₂O, $\mu = 1.0 M$ with KCl).

(eq. 5) and methylhydrazine¹⁸ with PA (eq. 12) general $\frac{-d(PA)}{dt} = [0.75(CH_3NHNH_2)^2 + 0.14(CH_2NHNH_2) + k_{hvd}(OH^-)](PA) \quad (12)$

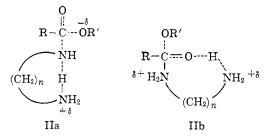
base catalysis is seen to be of great importance in the hydrazine reactions. Equation 12 is particularly pertinent since methylhydrazine shares with dimethylaminoalkylhydrazines of this study the characteristic of being a monoalkylhydrazine.


The reactions of the dinitrogen bases of this study with PA may be represented by eq. 13. In Figure 2 there is plotted the log k_1 and log k_2 values vs. pK_1' and

p K_2' . Included in Figure 2 are rate data from the literature^{4a} for the aminolysis of PA. In the case of the neutral diamines, log $(k_2/2)$ has been plotted to correct statistically for the two nucleophilic functional groups. The slope of the plot α of Figure 2 is 0.72, in accord with the study of Jencks and Carrivolo.^{4a} The data for the dimethylaminoalkylhydrazines is probably of greatest interest. The pK_1' values of the hydrazine groups are below 7.0 (Table II). At neutral pH these compounds should possess unprotonated hydrazine groups, yet in this pH range no readily detectable nucleophilicity toward PA could be found. It may be noted that hydrazine, due to its α -effect, has a nucleophilic rate constant about 35 times that

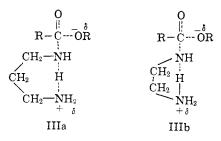
(18) A. R. Butler and T. C. Bruice, unpublished data.

anticipated from the Brønsted plot (Figure 2). If the dimethylaminoalkylhydrazines also possessed an α effect of comparable magnitude then their reaction $(i.e., k_1)$ with PA at neutral pH would have been detected. Of greatest interest is the fact that the rate constant dependent on the dissociation of the dimethylamino group is about 100 times greater than the rate constant for the reaction of the less sterically hindered and more basic trimethylamine with PA (Figure 2). It is difficult to see how the nonprotonated hydrazine group could act as a catalyst for attack of the dimethylamino group at the ester bond. It is, therefore, reasonable to suppose that either the nonprotonated dimethylamino group assists the attack of the hydrazine functional group or that the protonated dimethylamino group hinders the attack of the hydrazine functional group at the ester bond as in Ia,b, respectively. If



the hydrazine group is the nucleophilic center then it is obvious that $\log k_2$ should be plotted vs. pK_a' of the hydrazine groups. This would mean that the compounds exhibit nucleophilicities ca. 10³ greater than predicted from the Brønsted line based on the pK_a' of the hydrazine group (see dashed circle of Figure 2). This positive deviation would appear to be much too great to be accounted for via an α -effect since the α -effect for hydrazine is much less and it is known

Bruice, Willis | Reaction of Aliphatic Diamines with Phenyl Acetate 535


that alkyl hydrazines have still less of an α -effect.¹⁸ Therefore, hindrance of the nucleophilicity of the hydrazine group by the protonated dimethylamino group (as in Ib) may be in effect but of course cannot explain the rate enhancement. We suggest that the 10³-fold rate acceleration for the rate constant is best explained *via* an intramolecular general base catalysis of the hydrazinolysis reactions as depicted in Ia. The resultant effect is that the hydrazine group exhibits the nucleophilicity of an amine with a pK_a over three units greater (i.e., the dimethylamino group has imparted its basicity to the hydrazine without also imparting its large steric hindrance). In support of an intramolecular general base catalyzed mechanism (Ia) is the finding that the dimethylaminoalkylhydrazines exhibit only second-order kinetics with PA while methylhydrazine¹⁸ reacts with PA via third-order general base catalysis. The intramolecular process of Ia would be second order over-all and it would appear that the second-order, intramolecular, general base catalysis has swamped out the third-order, intermolecular, general base catalyzed reaction.

Most of the diamines, as either the free base or mono acid forms, exhibit rate constants (for the free base $k_2/2$) greater than predicted from the Brønsted plot which is based on the rate constants for primary and secondary monoamines. The positive deviations amount, however, to less than an order of magnitude. It is quite possible that the positive deviations do occur because of intramolecular general acid and general base catalysis as in IIa,b but, if so, the catalytic

processes are not of great kinetic significance. The largest rate enhancement in the diamines is seen to be

for $NH_2(CH_2)_3NH_2$ (12-fold) while the rate constant for $NH_2(CH_2)_2NH_2$ fits the Brønsted plot for the monoamines. This may reflect the more favorable structure of IIIa as compared to IIIb. The value of the rate

constant for $NH_2(CH_2)_6NH_2$ is not known with great accuracy and may be greater than that indicated in Figure 2. Care must be taken in drawing conclusions about the relative rates for the diamines, since their positive deviations from the Brønsted plot are in most instances comparable. In fact a reasonably good Brønsted plot may be drawn to correlate the rate data for the diamines and their monoprotonated species. It might be reasonably concluded that the diamines and their monoprotonated species belong to different Brønsted series than the monoamines. It is known that nitrogen bases of different types (amines, pyridines, imidazoles, etc.) may fall into distinct Brønsted series of approximately parallel slopes and small separation.¹⁹ This alternate explanation for the greater reactivity of the diamines and their conjugate acids is strengthened by our finding that PA does not exhibit susceptibility to general catalysis by primary *n*-alkylamines (a result not in accord with the findings of Jencks and Carriuolo^{4a}). Additional support for the intramolecular catalysis proposed for the dimethylaminoalkylhydrazines is the great susceptibility of PA to general base catalyzed hydrazinolysis.⁵

Acknowledgment. This work was supported by a grant from the National Institutes of Health. The authors gratefully acknowledge the technical assistance of Mrs. Patricia Benkovic.

(19) T. C. Bruice and R. Lapinski, J. Am. Chem. Soc., 80, 2265 (1958).